Careers in Drinking Water & Wastewater

Martin Allen – Water Research Foundation (retired)

Randall Giffin – Aurora Water Department (retired)

"Faculty"

- Martin Allen, PhD
- Senior research microbiologist – USEPA
- Director of Technology Transfer – Water Research Foundation
- 50+ publications
- VW (bug) enthusiast

- Randall Giffin
- USEPA-Wastewater Disinfection Studies(7 years)
- Aurora Water Quality Lab-32 years
- Colorado Water Utility Council Secretary and Chair

Why Consider Careers in Water?

- Growing need to replace those retiring increased demand for staff in decades to come
- Every community has a drinking water and wastewater treatment facilities – mobility throughout the country
- Different skill sets and levels of education needed – more later
- Salaries & Benefits good
- Satisfaction in protecting health and the environment

Overview of Drinking Water

- Water sources include lakes, rivers, groundwater
- Each source has different water quality characteristics requiring different treatment
- Drinking water needs to meet U.S. E.P.A criteria- e.g., lead, removal of human pathogens, etc.; Colorado authorized to administer (possible employer)
- Reservoirs and underground water mains/pipes convey the water to customers

Purpose of Drinking Water Treatment

- Remove or kill all human pathogens (not sterile water)
- Remove suspended particulates (turbidity)
- Make the water esthetically pleasing in taste and color
- Meet all EPA-set regulations
- Add disinfectant (chlorine species) to protect water quality from plant to consumer during distribution

Impossible to monitor for pathogens

Water Treatment Processes*

- Settling Chambers
- Flocculation settle suspended particles
- Filtration sand
- Ozone remove organics and color
- Membranes higher level of filtration
- UV kills protozoa (Cryptosporidium)
- Disinfection prior to leaving plant

^{*} Not all processes needed

Additional processes – ozone, UV, membranes

Wastewater Treatment Processes

- Three wastewater sources
- 1. Domestic -households, schools, etc
- 2. Industrial pretreated on-site
- 3. Storm water -rain water
- Collection system gravity flow
- Processes grit/solids removal; aeration; disinfection,
- Sludge digestion energy production, solids

Typical sewage treatment process in Canadian municipalities Primary treatment tanks Grit chamber Aeration tanks Outflow Sanitary sewer Disinfectant Storm sewer Secondary treatment tank

Examples of SkillsNeeded at Water Utilities

- Control room operators
- Process maintenance
- Water sample collection
- Water analysis
- Accountants
- Customer service reps
- Water main repairs
- Tradesmen/women
- Motor fleet
- Legislative liaison

- Security
- IT functions
- Surveyors
- Planners
- Managers
- Engineers
- Designers
- Regulatory liaison
- Public relations
- Human resources
- Trainers

Water Utility Concerns

Knowledge Areas	Total Rank
Asset Management	1
Utility Finance	2
Distribution System Integrity	3
Energy Management	4
Water Resources	5
Chemicals of Emerging Concern	6
Water Efficiency	7
Disinfection By-Products	8
Customer Service	9
Communication	10
Climate Change	11
Advanced Treatment	12
Desalination and Reuse	13
Microbials	14

Climate Change

Suddenly, Bob realizes that he's "part of the problem".

Water Quality Monitoring

- Source waters
- Within water treatment plant
- Leaving water treatment plant
- Within reservoirs and distribution system

Bacteria in water main tubercles-New Haven, CT; M.Allen,1977

Example of water testing

- Source water for drinking water
- Influent at wastewater facility
- Treated water leaving drinking water and waste water treatment facilities
- Target organisms Total Coliforms, E. coli

Common Drinking Water Tests (demonstrations)

- pH how acid or basic the water is (neutral is 7.0 pH)
- Alkalinity how well buffered the water is (quantity of treatment chemicals to add)
- Hardness amount of calcium/magnesium (water will leave lime deposits)
- Total coliforms general bacterial quality
- E. coli best indicator of possible human pathogens

Colilert – center (clear-negative), right-(positive for coliforms), left –(positive for *E.coli*)

Drinking Water "Issues"

- Sustainability (enough supply)
- Lead
- Fluoride
- Chlorine
- Disinfection Biproducts
- Pharmaceuticals
- Trace organics
- Heavy metals
- Bottled water
- Point-of-Use Devices
- Water main breaks
- Zebra mussels
- Algae

Types of Education Required

- Most utility jobs require at least high school degree
- Many positions require mechanical aptitude
- Many positions require an Associate Degree or a Bachelor Degree (engineering, chemistry, biology, administration, communication, customer service).
- In general the skill sets are the same for drinking water and wastewater utilities, except for the "yuk" factor
- Water treament more of a chemical process, wastewater more of a biological process
- Your HS advisor can help decide the type of courses needed for your career

Sources of Information

- http://workforwater.com/highschoolvotech/pag e.aspx?id=304
- http://workforwater.com/highschoolvotech/pag e_int.aspx?id=44
- http:/workforwater.com/page.aspx?id=281
- http://workforwater.com/resource water professional/page_int.aspx?id+2147483651

Dateline: Charleston, WV, Jan 8, 2014

- Massive chemical spill upstream from intake of drinking water plant serving 300, 000 customers
- Chemical 4-Methylcyclohexane Methanol (MCHM)
- All residents advised not to drink, bathe, wash clothes, cook with water
- Schools, restaurants, hotels, businesses –all closed
- Water plant process not designed for such an event
- After chemical moved downstream, treatment plant began operations and the entire distribution system flushed

Freedom Chemicals Site

Lessons Learned -Not Learned

- Such events can happen again
- West Virginia lax in inspecting chemical facilities (1994 last inspected)
- Physical defects in storage tank known but not repaired
- Company failed to notify State as required
- Maybe the state needs to consider public health over company profits and new laws enacted

Are you interested in being involved in such events?

- Such events will continue to occur
- Responders from water utilities, local, state, and federal agencies
- Requires the expertise of many disciplines (scientists, health personnel, water analysts, communicators, utility operators, etc.)
- Challenging but rewarding