

Agenda

- Introduction
- Societal Benefits
 - Interactive exercise: environmental effects on daily life
 - How weather affects us
 - How improvements in technology improves life
- Phenomena
 - What's relevant and how do we detect it?
 - Interactive demonstration. Interaction between environment & photons
- Engineering
 - Sensors to Products to Actionable Information
- Conclusion
- Resources

Earth Observation – what's that?

- Earth observation is the gathering of information about planet Earth's physical, chemical and biological systems via remote sensing technologies
- Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object

Image courtesy of NASA

Classes of Earth Observation Missions

- Weather
 - Geostationary
 - Polar Orbiting
- Climate
- Land Use
 - Vegetation
 - Urbanization
- Ocean
 - Biology
 - Winds and currents
 - Ice
- Intelligence, Surveillance, & Reconnaissance (ISR)
 - Imagery
 - Signals

Digitalglobe image

Focus: Weather and Climate

- Who wants environmental information?
- How does environmental information get to these people?
- Why is technology so important?
- How do people benefit?

Photos © Kerry D. Grant, 2014

Raytheon

Activity: Choosing Environmental Parameters to Describe a Given Location

Preparation for the activity

- Form a team
- Each team will elect a spokesperson
- Total time to complete activity: 15 minutes

Description of activity

- Each team will be assigned a city (or location)
- Each team will brainstorm and provide 5 environmental parameters for their assigned city
- Each team will discuss their parameters with the class
- The class gets to guess the team's location

Interesting facts about weather impacts

- Weather disasters with impacts exceeding \$1 billion have hit the US 151 times since 1980.
- Federal disaster declarations have risen from 65 in 2004 to 98 in 2012
- Average value of all US daily weather forecast information is around \$109 per household; \$11.4 billion in total

How is life better today?

- Weather forecasts have become more accurate
- Weather forecasts can be made further out in time
- Climate forecasts are more accurate

- These technology driven changes allow people to plan better
 - Prepare for bad weather events (blizzards, hurricanes, tornados)
 - Plan for changes in climate (longer periods of drought, more violent weather, rising sea levels)
 - Schedule outdoor activities (want to go swimming? climb a mountain? fly a kite?)

Building A More Capable System The Historical Context

First Image from TIROS-1 (April 1, 1960)

New Brunswick and Nova Scotia

S-NPP VIIRS Image-375 m

VIIRS First Light - US East Coast

The problem of remote sensing

- What do we need to measure?
 - Temperature
 - Pressure
 - Humidity
 - Cloud properties
 - Wind speed and direction
 - Precipitation
- What can we actually measure from space?
- Does what we can measure have anything to do with what we need to measure?

What we can measure

- Some things we can see so take a picture
 - Clouds (where they are, type)
 - Taking a number of pictures shows movement, so we can measure winds
 - But a picture is an incomplete measurement

The solution

- Electromagnetic energy can be measured directly
- The energy we measure is affected by the things we care about in very predictable ways: temperature, humidity, winds, clouds, precipitation
- By measuring electromagnetic energy very precisely, and understanding how this energy is changed by the environment, we can derive the actual physical conditions of the earth

Electromagnetic Energy Flow

Source: Tropical Meteorology, 2nd Edition, © 2011 COMET

Demonstration

How does a cloud affect electromagnetic energy at two different wavelengths?

The Electromagnetic Spectrum and the **Atmosphere**

Raytheon

Observing the Electromagnetic Spectrum – the Suomi NPP spacecraft

The Suomi NPP Satellite

ATMS

CERES

OMPS

CrIS

Raytheon

Sensors to Products to Actionable Info

S-NPP Data Products VIIRS ATMS

OMPS

CERES

Benefits for Decision Makers

Weather Consumer

Maritime Operations

Military Operations

Transportation

Public Utilities

7/16/2025

Daily Operations

Hurricane Isaac in Infrared

VIIRS True Color – Waldo Canyon Fire

VIIRS Night Visible Fire Detection

OMPS Smoke (Aerosol) Detection

OMPS Measurement of Ozone Hole

VIIRS Ice Detection – Day and Night

Conclusion

- Understanding the environment provides direct benefits to people in terms of safety, quality of life, and future needs
- Measuring the environment in great detail allows people to understand its current state and predict its future
- Only way to measure the entire globe in detail is by using remote sensing techniques
- Understanding how electromagnetic energy interacts with the environment makes remote sensing possible
- Engineering brings it all together building sensors, flying satellites, processing the data, making forecasts, delivering the information

Resources

- Interactive blue marble
 http://www.raytheon.com/newsroom/technology/rtn12 bluemarble/
- S-NPP information

http://npp.gsfc.nasa.gov/suomi.html
http://www.nasa.gov/mission_pages/NPP/main/

Instrument overviews

http://npp.gsfc.nasa.gov/viirs.html
http://npp.gsfc.nasa.gov/cris.html
http://npp.gsfc.nasa.gov/atms.html
http://npp.gsfc.nasa.gov/omps.html
http://npp.gsfc.nasa.gov/ceres.html

Raytheon

