Women In STEM and the Science of Fracking

Members of CO Ivy+ Women's STEM Initiative's Team:

Ellen Scott

Kris Walsh

Julia Kimmerly

Agenda

- Panel: Women in STEM
- Lecture
 - Energy Basics
 - Impacts of Energy on our World
 - Oil and Gas and Hydraulic Fracturing
- Workshop: Fracking with Jello

Energy as a STEM Career

- Working in Energy has challenges not faced in other Engineering Careers
 - Energy is a commodity
 - Price can fluctuate rapidly and significantly
 - Price reduction for fossil fuels hurts competition (renewable energy)
 - Price increases for fossil fuels improves opportunities for competition
 - Energy is highly regulated
 - Federal (Environmental Protection Agency, US Dept of Energy, Federal Energy Regulatory Commission, etc)
 - State (Colorado Public Utilities Commission)
 - Highly political/controversial (jobs, environment, consumer pricing)

Fossil Fuels

Fossil fuels were once alive

- Oil and Natural Gas
 - Created from organisims that lived in water and were buried under ocean or river sediments Oil and Natural Gas
 - Heat, pressure and bacteria "cooked" organic material
 - Oil and gas worked its way to the surface until encountering "cap rocks"

Coal

- Created from trees, ferns, plants that existed 300-400 millions years ago
- Heat, pressure and bacteria "cooked" organic material
- US East Coast coal formed from swamps covered by sea water
- US West Coast coal formed from fresh water swamps

Coal – Pros and Cons

• Pros

- Cheap
- Abundant and available in industrialized countries
- Mature industry
- High Load Factor

• Cons

- Non-renewable
- Largest contributor to global warming (CO2 per BTU)
- High transportation cost
- Other environmental factors (toxicity, radiation, methane)

Oil – Pros and Cons

Pros

- No other energy source can move vehicles faster and longer than any other energy source
- Abundant
- Currently cheap
- Easy to use and transport

Cons

- Non-renewable
- Environmental impact from drilling, transporting, burning
- Dangerous

Natural Gas — Pros and Cons

Pros

- Abundant
- Produces less soot than other fossil fuels
- Abundant supply
- Infrastructure in place

• Cons

- Non-renewable
- Highly flammable
- Greenhouse gas emissions
- Expensive pipelines

Renewable Energy

- Energy that is collected from resources that are naturally replenished on a human timescale
 - Solar
 - Wind
 - Hydroelectric power
 - Tidal
 - Biomass
 - Geothermal

Solar - Pros and Cons

Pros

- Renewable
- Unlimited supply
- No water or air pollution

Cons

- Not currently cost effective
- Reliability depends on sunlight
- Storage and backup are necessary

Wind – Pros and Cons

Pros

- Renewable
- Produces no water or air pollution
- Farmers can receive an income
- Relatively cheap to build a wind farm

• Cons

- Constant wind required
- Visual impact of wind farms
- Significant land needed
- Environmental impacts to wildlife still being investigated

Hydroelectric Power- Pros and Cons

Pros

- Renewable
- Abundant, clean and safe
- Easily stored in reservoirs
- Recreational benefits such as boating, fishing

Cons

- Significant environmental impacts (dams)
- Can only be used near a water supply

History of Energy and Human Development

Economy

US Consumption by Source v. Real GDP 1845-2001

Environment

- Wood: deforestation, emissions from consumption
- Coal: aquifer contamination, mining impacts, emissions from
 - consumption
- Hydro: fish populations, water temperature and flow changes
- Oil and Gas: aquifer contamination, spills, emissions from consumption
- Nuclear: nuclear waste, radioactive contamination, water consumption
- Wind: bird and bat populations
- Solar: land intensive, toxic production materials, water usage for
 - maintenance
- Biomass: land intensive, water intensive, evaporative emissions
- Geothermal: siting intensive, emissions of sulfur and carbon dioxide

Politics

- Energy Planning
- Legislation on energy activities (transportation, storage)
- Legislation on energy use (energy efficiency, emissions standards)
- Fiscal policies (taxes, subsidies)
- Energy Security (international treaties, trade agreements, strategic relationships)

Where Do Oil and Gas Come From?

How Do We Extract Oil and Gas?

Why Do We Hydraulically Fracture Wells?

How Do We Hydraulically Fracture Wells?

How Do We Hydraulically Fracture Wells?

Workshop Introduction

- Understand the process of hydraulic fracturing
- Form a hypothesis of what will happen to the jello when injected with syrup
- Observe the fracture pattern and any variations that may change it
- Understand why the syrup in jello may behave differently from a hydraulically fractured underground rock

Next

- Move into cafeteria
- Split into groups of 4-5